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Abstract. Although current state-of-the-art planners utilize properties
of the environment such as the workspace topology to guide exploration,
more efficient methods and metrics that bias exploration based on desired
properties of the robot and its workspace are needed.

In response to this, we present a method that biases the exploration of a
Rapidly-exploring Random Tree (RRT) based on the clearance-the free
space between the obstacle boundaries of the workspace. The exploration
can be biased towards regions with maximum or minimum clearance
value. In particular, this method is applied to Dynamic Region-biased
RRT (DR-RRT), a sampling-based planner that uses the environment’s
topology to guide the growth of an RRT. We show our approach generates
safer paths in less time compared to the regular DR-RRT.

1 Introduction

Motion planning refers to the classical problem of finding a collision-free path
for a robot given a starting point and a goal destination in an environment
containing obstacles. Outside the universal robotics application, motion planning
is used to find the minimal invasive path for surgical operations, and also in
computational biology to study the folding pathways and motions of proteins,
to name a few. Except for motion planning problem with robots that have few
degrees of freedom (DoFs), it is computationally hard to find a collision-free
path [1].

According to J. Denny et al., state-of-the-art motion planners rely on ran-
domized sampling to construct an approximate model of the problem space that
is then searched for a valid path [2]. Motion planning for robotics and compu-
tational biology problems could be improved by using properties specific to the
workspace and robot(s) during planning.
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Many sampling-based planners exploit workspace properties like guiding sam-
pling with collision information [3, 4], breaking planning into sub-problems for
better planning [5,6], biasing sampling using obstacle geometry [7,8], and making
a representation of the workspace topology to direct the planner to unexplored
areas [2]. However, it would be desirable to design more methods and metrics
to target exploration of the workspace using properties specific to the prob-
lem. Take the case of predicting accessibility of protein binding sites. It would
be convenient to guide the exploration of the protein sites based on the energy
threshold level. A more general example would be in robotics, for safety purposes
it would be desirable to explore passages in the workspace with wider clearance
value. Clearance value refers to the value of free space between obstacles of the
workspace. Taking advantage of robot and workspace properties would also be
efficient in narrow passage problems. In the case of narrow passages-parts of the
environment where the probability of sampling a valid object position is low [2],
biasing environment exploration towards regions with minimum clearance values
would be valuable in exploring these passages.

In our work, we exploit the workspace property, clearance value, to guide
exploration. In particular, our method is applied to Dynamic Region-biased
Rapidly-exploring Random Tree (DR-RRT), a sampling-based planner that en-
codes the environment’s topology to guide RRT growth in the workspace. Using
workspace topology guidance is beneficial in problems that have a strong corre-
lation with the workspace geometry [2], as the issues explained above.

We designed a method that biases environment exploration based on the
value of the free space between obstacles of the workspace. Our experiments
show that our algorithm explores the workspace based on the clearance value
of its passages. Hence we can generate safer paths and optimize the cost and
runtime of the planning process.

2 Related Work

In this section, we discuss related work to our method and explain the terms
and concepts used in the paper.

(a) Reeb Graph (b) MCS Workspace Skeleton

Fig. 1: Workspace Skeletons



2.1 Workspace Skeleton

A Workspace Skeleton is an undirected graph of the free workspace that repre-
sents the environment's topology. Since the Workspace Skeleton satisfies certain
topological properties [2], workspace properties like clearance and connectivity
can be computed from it.

For our method, we used two types of Workspace Skeleton, the Reeb Graph
[9], and the Mean Curvature Skeleton (MCS) [10]. The Reeb Graph is a graph
where the vertices are represented by the Morse function and its edges are topo-
logically transitionally to one another [9] (see Figure 1(a)). While the Mean
Curvature Skeleton is constructed from a mesh-based algorithm which computes
the skeletal representation from the mean curvature flow of some surfaces in the
workspace [11] (see Figure 1(b)).

2.2 Dynamic Region-biased Rapidly-exploring Random Trees

Rapidly-exploring Random Tree (RRT) [12] is a single-query planner which at
each extension attempt, randomly samples a configuration, qrand and the nearest
configuration in the tree, qnear is found, If there are no obstacles between them,
qrand and qnear are then connected.

DR-RRT is a sampling-based planner that uses the Workspace Skeleton for
guidance to choose an RRT expansion direction. It uses the Workspace Skeleton
to guide RRT growth based on the probability of an RRT exploration to reach
the next region in the Workspace Skeleton [2]. Compared to RRT, DR-RRT
produces more productive samples and explores more regions in the Workspace
Skeleton than regular RRT. DR-RRT avoids false passages and is more robust
in complex environments with multiple homotopy classes [2].

Although DR-RRT exploits the Workspace topology, there are instances
where it does not explore the workspace as efficiently as one would expect. For
example, it would be efficient for DR-RRT to first explore the wider passages in
a workspace for a feasible path before exploring narrow passages. But DR-RRT
explores the workspace based on the probability of sampling valid configura-
tions in each region of the Query Skeleton [2]. In this case, DR-RRT spends
time exploring both wide and narrow passages, even though exploring the wider
passages first is more efficient because they would be fewer collision checks.

3 Clearance-Biased Exploration

In this section, we explain clearance value biased exploration.

3.1 Algorithm Overview

Our clearance-biased exploration method is depicted in Algorithm 1 and Fig-
ure 2. The main idea is to compute a Property Map for the Workplace Skeleton.
A Property Map is an unordered map that contains the clearance value for every
node and edge in the Workspace Skeleton.



Algorithm 1 Clearance-Biased Exploration

Input: env: the environment
Output: g: the free-space roadmap

WS ← BuildWorkspaceSkeleton(env)
QS ← GetQuerySkeleton(WS)
PM ← GeneratePropertyMap(QS)
curRegion← CreateDynamicSamplingRegion(PM0)
while !done do

g ← RRT(curRegion)
children← curRegion.GetChildren()
curRegion← maxvar(children.Clearance())

return g

Using DR-RRT, a Workspace Skeleton is created for the environment. The
Workspace Skeleton is then pruned only to contain edges that connects the start
configuration to the goal configuration. The Workspace skeleton is pruned to
avoid exploring regions that do not solve the query. The pruned skeleton is called
a Query Skeleton [2] (Figure 2(b)). After pruning, a Property Map is created.

From the Query skeleton, DR-RRT creates a dynamic sampling region at the
node closest to the start point of the query (Figure 2(c)). At the initial region,
it begins to grow an RRT (Figure 2(d)). On each iteration, a region with the
maximum clearance value is chosen as the next growth target (Figure 2(e)). In a
workspace, clearance-biased DR-RRT first explores regions with higher clearance
value (Figure 2(f)). Exploration can also be targeted to regions with smaller
clearance values (narrow passages).

Method
Workspace
Skeleton

Runtime
Number of
Collision
Checks

Average
Path

Clearance

Clearance bias DR-RRT
Reeb Graph 0.4164 sec 43105 9.14524

MCS 4.1565 sec 45373 8.15253

Regular DR-RRT
Reeb Graph 0.5259 sec 73219 9.08872

MCS 4.1518 sec 41827 6.09615

Table 1: Experiment Results

4 Experiments

Our goal for these experiments is to demonstrate how clearance-biased DR-
RRT utilizes the information from the Workspace Skeleton during sampling to
guide RRT growth. We ran our tests in the 3D environment shown in Figure 3.
We measure test success by the exploration of the RRT towards regions with
the specified clearance value. For comparison, we check the number of collision



(a) Query (b) Query Skeleton (c) Initial Region

(d) RRT growth (e) Biased growth (f) Path

Fig. 2: Example of clearance-biased DR-RRT: (a) environment and query qs, qg
(b) Query Skeleton (c) Dynamic Sampling Region created at Initial region near
qs(d) RRT growth (e) exploration biased towards region with larger clearance
value (f) Collision-free path from qs, qg

Fig. 3: 3D Test Environment With qs and qg

detection calls, which indicates the total number of collision check it takes for
the query to be solved, the total time taken to solve the query, and the clearance
value of the collision-free path.

4.1 Experimental setup

We demonstrate our method by running tests on the 3D environment in Fig-
ure 3. We compared regular DR-RRT and the clearance-biased DR-RRT on the
workspace with a Reeb Graph Query Skeleton (Figure 4(a)) and a Mean Cur-
vature Query Skeleton (Figure 5(a)).



(a) MCS Query Skeleton
(b) Path - Clearance-
biased DR-RRT

(c) Path - Regular DR-
RRT

Fig. 4: Test Result on 3D Environment using MCS

(a) Reeb Graph Query
Skeleton

(b) Path - Clearance-
biased DR-RRT

(c) Path - Regular DR-
RRT

Fig. 5: Test Result on 3D Environment using Reeb Graph

We ran our tests on a Unix system, and we use VIZMO++, a motion plan-
ning visualization tool, to debug and visualize all the ran experiments. We also
implemented all our methods in Parasol Motion Planning Library, (PMPL) a
C++ motion planning library developed in the Parasol Lab.

4.2 Results

From Table 1, our method shows faster planning time and less number of collision
detection checks than the regular DR-RRT. The average clearance value from the
path gotten from the clearance-biased DR-RRT is greater than that of regular
DR-RRT because exploration is biased towards regions with higher clearance
value. Thus the paths found with clearance-biased DR-RRT is safer. Also, it
can be noted that the clearance-biased method is robust with the underlying
skeleton as the difference between the number of collision detection calls is not
as vast as the difference in regular DR-RRT.

5 Conclusion

We introduced a new method for biasing DR-RRT based on the Workspace Skele-
ton clearance value. Our contribution is the use of the clearance value property
from the Workspace Skeleton to bias how regions of DR-RRT are explored. Our
experiment result shows an improvement in overall planning time and less num-
ber of collision checks as compared to regular DR-RRT.



Some future directions for this work would include designing more metrics
for biasing exploration based on other properties like energy threshold levels.
More efficient methods and metrics can be developed to guide exploration for
better exploitation of the Workspace Skeleton.
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