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Abstract. We present a method that uses workspace properties like
clearance and energy to improve the motion planning exploration pro-
cess. Our approach is applied to the robotics and Protein-ligand appli-
cation of motion planning. In robotics, we use the workspace property,
clearance, to find safer paths for robots. And in proteins, we use energy
levels and clearance to explore possible routes for the ligand. In both
applications, our experiments show we find safer paths in a faster time
when compared to other methods.

1 Introduction

Motion Planning is a geometry problem that is typically used in robotics to study
robot navigation. Given a robot with its desired start and goal points, the motion
planning task is to find a collision-free path from the start to the goal while
respecting the constraints of the robot. Aside from robotics, motion planning is
applied in computer-aided designs, computer graphics, and bioinformatics [1].
One of its applications in bioinformatics is its use in studying how a geometric
body known as protein changes when it interacts with a rigid body called a
ligand. This application is essential as it is used to improve the design of drug
molecules.

This geometry problem is challenging to solve for problems involving complex
geometries which are hard to represent in a computer. A deterministic approach
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to the motion planning problem has an exponential runtime proportional to the
dimension of the geometrical bodies involved, which implies that motion plan-
ning problems are PSPACE-hard [1]. Because of this, randomized algorithms are
used to address complicated motion planning problems involving high dimen-
sions. However, the trade-off is that randomized algorithms are probabilistically
complete, but they are practically more efficient and less time-consuming for
complex problems.

The term “workspace” refers to the physical environment of the robot and
obstacles. The workspace is dependent on the motion planning problem, and
each workspace has specific properties depending on its application and the geo-
metrical bodies included. For example, in the robotics application, a workspace
property could be the lighting. Particular passages in the workspace may have
different lighting intensity. Another property for this application is clearance
value, as various passages may have varying sizes of free-space or passage width.
In the bioinformatics application, the energy threshold is the shared workspace
property. However, different molecules have diverse ranges for the energy levels
that are specific to their molecular structure.

The Bias-guided method is also applied to the Protein-ligand Binding prob-
lem in computational biology. Ligands are small drug molecules that when in-
teracted with proteins, change their shape and functionality. These interaction
regions are known as binding sites and can be located within the protein’s inner
hull. We can study the protein as a geometric and energetic problem, applying
both the clearance biasing method as well as an additional energy metric biasing
method. These metrics can help gain insight on how a ligand navigates around
the tunnels of the protein. Only recently, Protein-ligand binding methods began
considering the feasible paths a ligand can take to the binding site. Previous
work mainly focused on the final fit of the ligand to the binding site, without
considering the path the ligand must traverse to reach its goal. Current work
studies these possible paths, investigating how the protein’s tunnels can regulate
the accessibility of certain ligands to the site [2].

Our method strives to understand and evaluate the tunnels of the protein
that the ligand would most likely be able to access in order to reach the binding
site. Not only is accessibility of a tunnel important, but probability of a tunnel
being a true path a ligand could take should also be taken into account. In order
to gain insight on meaningful tunnels, we want to find tunnels of high volume
and low energy for which the Protein-ligand complex will increase in stability [2].

By comparing the Bias-guided strategy with other non-biasing strategies, we
can see improvements in speed and the quality of tunnels found. The experi-
ments presented in this paper shows that by using workspace metrics to bias
planning, we generate desirable paths faster for both the robotics and Protein-
ligand application of motion planning.

2 Related Work

In this section, we would discuss the preliminaries of our work.



2.1 The Motion Planning Problem

A configuration represents a complete specification of the position of every point
on the robot. And the set of all the possible configurations of the robot is known
as the Configuration Space Cspace. The Cspace is made up of Obstacle Space
Cobst and Free Space Cfree. Cobst is the set of all configurations which lies in
one or more obstacles, and Cfree represents the set of all configurations that are
not in Cobst. The robot is represented as a configuration in Cspace. Cspace is an
abstract model of the workspace and as such, it does not capture all the possible
constraints of the workspace [3].

The motion planning problem is defined in Cspace as follows: Given a start
configuration (qs ∈ Cfree) and a goal configuration (qg ∈ Cfree). Return a
continuous path, p : [0, 1] → Cfree such that p(0) = qs and p(1) = qg. Other
non-robotics applications can be formulated as a motion planning problem, if
they can be map to the geometric definition given above. For example, the study
of Protein-ligand interaction is a motion planning problem, where the robot is
the ligand, and the geometric representation of the protein is the workspace.

Protein-Ligand Binding Problem A protein is a large structure made up of
a chain of amino acids that interacts in several essential reactions in the body [2].
These reactions can include binding with a small drug molecule called a ligand.
The region the ligand interacts with on the protein is known as the binding site.
Once the interaction occurs, the protein’s shape and functionality can change.

Recent research indicates that the molecular tunnels of the protein regulate
the accessibility of ligands and is dependent on those ligands’ specific character-
istics. These tunnels show a connection with how binding site activity behaves.
Investigating how the ligand is able to travel to the binding site can provide in-
sight in how Protein-ligand binding works and how to predict certain biological
phenomena.

2.2 Sampling-based Planning

This planning approach avoids creating an explicit construction of Cobst. Instead
it treats Cspace as a black box, and randomly samples configurations in Cspace

using a collision detection check (CDC) to define its validity. A roadmap is
constructed from the valid samples and is then searched for a path [3]. A roadmap
is a topological graph, which every vertex represents a configuration, and each
edge is a path connecting two configurations. One problem with this approach
is the cost of CDC. CDCs are expensive because they involve translating the
problem between Cspace and workspace. Another bottleneck for this approach
is narrow passages. Narrow passages are parts of the environment where the
probability of sampling a valid object position is low.

Rapidly-exploring Random Trees (RRTs) A Rapidly-exploring Random
Tree (RRT) is a sampling-based planner which takes a tree-based approach to



solving the motion planning problem. Tree-based planners are planners that
builds a tree roadmap during planning. At each extension attempt of an RRT,
it generates a random configuration, qrand which is connected to the nearest
configuration, qnear, If no obstacles exist between qrand and qnear. RRTs are
good for solving single query problems and they tend to explore the workspace
better than other sampling-based planners.

Probabilistic Roadmap (PRM) PRM takes a graph based approach to solv-
ing the motion planning problem [4]. This planning strategy creates a graph
or roadmap by repeatedly generating random possible configurations and then
attempting to connect them. As a result, the graph that is created will be en-
tirely in free space since the planner will check for collisions when connecting
the roadmap. PRM has an advantage over other planning strategies because it
is able to handle multiple queries. In other words, PRM can search and find
multiple paths with a single generated roadmap.

2.3 Guided Motion Planning

Topological Guidance Topological guidance involves using the workspace
structure to direct how sampling-based planners like PRM and RRT explores
the environment. Some approaches to the motion planning problem utilize the
workspace decomposition [5, 6] for planning, specifically for targeting narrow
passages. The workspace decomposition involves partitioning the workspace into
tetrahedral, which are used to bias the sampling process. Another approach is
the used of Skeletons made from the workspace decomposition to bias sampling
in Cspace. Workspace Skeletons are graphs that capture the topological features
of the environment.

The Bias-guided method relies on topological guidance sampling-based plan-
ners. The goal of our approach is to exploit the topological properties of such
methods using metrics that are beneficial to specific workspace correlated prob-
lems. As mentioned in the introduction, our method is applied to DR-RRT and
DR-RRG. For both skeleton-guided planners, we use Mean Curvature Skeleton
(MCS) for generating our workspace skeleton [7]. MCS constructs the workspace
skeleton using a mesh-based algorithm to compute its skeletal representation
from the mean curvature flow of surfaces in the workspace.

Planning We use different planners to build our roadmap based on the motion
planning problem. Different planning methods have advantages in certain en-
vironments over others. The Bias-guided method is applied to dynamic region-
biased strategies such as Dynamic Region Rapidly-exploring Random Graph
(DR-RRG) [8] for proteins and Dynamic Region Rapidly-exploring Random Tree
(DR-RRT) [9] for robotics.

Dynamic region-biased strategies guide the planner to sample only from par-
ticular regions based on the workspace topology. A workspace skeleton is created
to direct regions to sample from. These regions will then be created, explored,



and then destroyed during planning. DR-RRT is a skeleton-guided RRT which
uses the workspace skeleton to bias RRT growth. In other words, the planner will
grow the tree from samples generated inside the selected region and will advance
to the next region once those regions have been represented. DR-RRT is faster
and returns lower collision detection calls when compared to basic RRT. While
DR-RRG is a skeleton-guided strategy that combines PRM and RRT. Like the
DR-RRT strategy, the planner will choose a region to sample from using RRT;
however, it will then attempt to connect these samples to form a roadmap to in-
crease connectivity. One advantage of DR-RRG over DR-RRT is that it supports
multiple queries on the roadmap.

3 Method

As mentioned in section 2.3, our method is designed for skeleton-guided RRTs
and applied to DR-RRT in the robotics application and DR-RRG in the protein
application.

Algorithm 1 Bias-guided DR-RDMP

Input: Environment env, Start s, Goal g,
Bias Metric (min/max, clearance/energy) biasMetric

Output: Path p
1: WS ← GetWorkspaceSkeleton(env)
2: AS ← AnnotateSkeleton(WS)
3: g ← s
4: r ← GetInitialRegion(AS, s)
5: while ¬done do
6: Cr ← GetChildren(r)
7: r ← SelectRegion(Cr, biasMetric)
8: R← GrowRDMP(r)
9: end while

10: p← Query(R, g)
11: return p

3.1 Algorithm Overview

The Bias-guided method utilizes workspace properties such as clearance and
energy to guide how skeleton-guided planners generate roadmaps. Algorithm
1 details an application-agnostic Bias-guided strategy to simplify the method
explanation. Figure 1 would be used as an example to demonstrate the execution
of the method.

The Bias-guided algorithm takes in the environment, query (qs, qg), and bias
metric which specifies if the planner should favor the maximum or minimum
energy or clearance regions. Next, the method generates a workspace skeleton



(Figure 1b) for the given environment. The workspace skeleton is then annotated
with workspace properties such as clearance and energy, as seen in Figure 1c.

(a) qs (red), qg
(blue) (b) Skeleton

(c) Annotated
skeleton (d) Planning

Fig. 1: Example execution of the Bias-guided method: (a) env with qs and qg (b)
MazeTunnel Workspace Skeleton (green) (c) Workspace Skeleton annotated with
clearance value ( red → highest clearance, blue → low clearance) (d) Minimum
clearance-bias exploration process (half-way).

The planning process is directed using the annotated skeleton. We start sam-
pling close to qs to ensure the algorithm explores as many paths or tunnels that
lead to the goal (line 3). Our method biases roadmap construction by selecting
the region to explore from the annotated skeleton using the biasMetric. It then
samples and grows from that region to build the roadmap (line 5-8). In Figure
1d, roadmap construction is biased towards regions with minimum clearance.
After roadmap construction, we query the resulting roadmap for a path to the
goal (line 10).

3.2 Metrics

This section covers detailed description of the metrics used for the Bias-guided
method.

Computing Clearance Clearance is defined as the size of free space between
obstacles in the environment. Given a workspace skeleton, we compute clearance
using the skeleton node and the point closest to the nearest obstacle. The dis-
tance between this point and the skeleton node is what we define as its clearance
value.

To annotate the workspace skeleton with its clearance value, we do the fol-
lowing: Calculate the clearance value of every node in the workspace skeleton.
Then, the edge clearance value is assigned as the maximum or minimum node



clearance value, which makes up the edge. We pick the maximum node clearance
for minimum Bias-guidance and minimum node clearance for maximum Bias-
guidance. This way, we ensure that we select the best option available for each
step of the planning process.

Computing Energy-value Our energy function calculates the energy of each
region based on Van der waals interactions, which are weak intermolecular forces
between two atoms or molecules [10]. How strong the attraction between two
atoms are determined by the distance they are from one another; as the atoms
move closer the energy of the system decreases, but if they come too close the
atoms start to repel each other and dramatically increase the energy. The energy
values the function outputs for is determined by first discretizing the workspace
into grid cells and determining the influence of the force of every atom of the
protein on the ligand.

3.3 Visualization Tools

Parasol lab’s motion planning visualization tool, Vizmo++, is used to interact
and visualize motion planning problems. To test how well our biasing strategy
will influence the construction of the roadmap, we added a feature to color the
workspace skeleton based on its annotated values. The feature is compatible with
both clearance and energy annotations and is adaptable for any given range of
values. Figure 1c depicts a workspace skeleton annotated with clearance value,
with red indicating high clearance and blue for low clearance. This visualization
feature is also handy for debugging purposes and visualizing the performance of
the Bias-guided method.

(a) Obstacles with qs, qg (b) Obstacles with MCS

Fig. 2: Obstacles robotics environment

4 Experiments

The Bias-guided method is implemented in C++ using the Parasol Motion
Planning Library (PMPL) and Standard Template Adaptive Parallel Library



(STAPL); both libraries are developed in the Parasol Lab. We also use Vizmo++
to visualize the simulated experiments. And all the experiments were run on a
3.40GHz Intel Core i7-3770 CPU.

Environment Strategy Runtime CDC Nodes Edges Path Clearance

Obstacles
Regular DR-RRT 0.33 87,841 267 531 5.05
Max Clearance-bias 0.18 40,510 131 260 6.12
Min Clearance-bias 0.22 52,287 177 353 3.40

MazeTunnel
Regular DR-RRT 0.46 11,553 98 194 0.93
Max Clearance-bias 0.18 6,158 65 127 0.92
Min Clearance-bias 1.45 28,077 88 173 0.85

Table 1: Robotics experiment results. Bolded values indicate the best value for
each environment. The best value for Runtime, CDC, Nodes, and Edges is the
lowest number in the column, while the best value for the Path Clearance is the
highest number, which indicates the safest path.

4.1 Robotics Experiments

(a) MazeTunnel with qs (red),
qg (blue) (b) MCS for MazeTunnel

Fig. 3: MazeTunnel robotics environment

Environment Setup In the robotics experiments, we compare our method to
the regular DR-RRT. We used DR-RRT because it is a skeleton-guided RRT
that utilizes the workspace decomposition for directing RRT growth.



We ran our experiment in MazeTunnel (Figure 3a), and Obstacles (Figure
2a) using holonomic robots. Both environments have wide and narrow passage
options. We selected these 3D environments to demonstrate the process of our
method and its advantages in such situations. We use MCS for our experiments
because it provides a better workspace skeleton for environments with convex
bodies like the MazeTunnel environment. Each experiment ran until the query
was solved. We performed trials using ten random seeds for each strategy in both
environments, and we averaged the following over all the trials: runtime, nodes,
edges, CDC, and path clearance.

(a) Regular DR-RRT (b) Max Clearance-bias (c) Min Clearance-bias

Fig. 4: The resulting roadmap and path from running the different strategies in
Obstacles.

Result Table 1 contains the data collection from the robotics experiment. Run-
time is the time (in seconds) taken for each strategy to find a path. CDC is the
amount of collision detection checks performed while the strategy runs. Nodes
and Edges refer to the number of nodes and edges in the resulting roadmap.
And Path Clearance is the clearance value of the path return by the strategy.
Runtime, CDC, Nodes, Edges, and Path Clearance are averaged over all the ten
trials performed. Figure 4 and 5 shows the roadmap (in black) and the resulting
path (highlighted) from running the experiments in Obstacles and MazeTunnel
environment.

Discussion In Obstacles, the results Table 1 shows that both minimum and
maximum clearance-bias have lower CDC than regular DR-RRT. The resulting
roadmaps with these strategies also have fewer nodes and edges when compared
to regular DR-RRT. Minimum clearance-bias returns the path with the lowest
clearance value, while maximum clearance-bias returns the path with the widest
clearance. The Bias-guided method also returns the safest path in the quickest
time using maximum clearance-bias in Obstacles.

Maximum clearance-bias returns the widest path in MazeTunnel with lower
CDC, nodes, and edges when compared to regular DR-RRT. And it is the fastest
strategy in MazeTunnel. Minimum clearance-bias was the slowest, but it had
fewer nodes and edges than regular DR-RRT. As seen from our experiments,
biasing roadmap construction using a workspace property such as clearance,



(a) Regular DR-RRT (b) Max Clearance-bias (c) Min Clearance-bias

Fig. 5: The resulting roadmap and path from running the different strategies in
MazeTunnel.

help speed up the planning process in robotics environments like Obstacles and
MazeTunnel.

4.2 Protein Experiments

(a) Regular DR-RRG (b) Min Energy-bias (c) Max Clearance-bias

Fig. 6: The resulting roadmaps from running the different strategies in 3fbw

Environment Setup The strategies used for the protein efcinvironments are
the Bias-guided method and regular DR-RRG for comparison. We biased towards



minimum energy for the energy-bias method and maximum clearance for the
clearance-bias method. MCS is used to generate the skeleton for all strategies.

The data for the protein environments were obtained from the Protein Data
Bank (PDB) [11], and their corresponding geometric model was extracted using
UCSF Chimera [12]. We also got the ligand data from PDB and modeled it
geometrically using a custom script.

All the strategies were tested in four different proteins (3fbw, 4fwb, 3rk4,
hzg), all of which binds to the same type of ligand (3KP). We performed trials
using ten random seeds, and each experiment ran until a specified number of
nodes are built outside the hull of the protein. We also observed and analyzed
the tunnels found in the resulting roadmaps.

Protein Strategy Runtime Nodes Edges Tunnels

3fbw
default 173 644 2878 12
energy 121 413 2534 12
clearance 160 616 2546 10

3rk4
default 273 772 3202 12
energy 318 693 2683 11
clearance 329 428 1904 9

4fwb
default 125 559 2421 8
energy 125 492 2183 9
clearance 122 472 2389 12

4hzg
default 123 455 1907 8
energy 169 350 1649 11
clearance 141 454 1984 11

Table 2: Protein experiment results. Bolded values indicate the best value for
each environment. The best value for Runtime, Nodes, and Edges is the lowest
number in the column, while the best value for the Tunnels is the highest number.

Result Table 2 shows the median runtime, number of nodes, edges, and tunnels
found over all the trials performed in each environment.

Discussion Although the runtime for the strategies is similar in Table 2, the
Bias-guided strategies produced a smaller and tighter roadmap as opposed to
the roadmaps returned by regular DR-RRG. We can see that both the clearance
and energy biased strategies explored favorable regions (red and orange colors
of Figure 6b and 6c) of the skeleton. The Bias-guided roadmaps are congregated
around low energy, high volume areas, which demonstrates that our method
finds more favorable tunnels than the regular DR-RRG.

The number of tunnels found throughout the ten seed runs is relatively
around the same across all strategies. We notice that the biasing strategies are
more efficient in finding specified tunnels in less time.



5 Conclusions

As noticed from the experiments above, the Bias-guided method is dependent
on the workspace skeleton, and it performs best on motion planning problems
that have strong relations to its workspace topology. Biasing exploration using
workspace metrics allows us to find the most desirable paths faster, while also
targeting exploration to narrow passages.

In summary, we introduced using workspace metrics such as clearance and en-
ergy to improve the exploration process for motion planning in robotics and the
study of Protein-ligand binding. Our main contribution is the use of workspace
properties available to skeleton-guided planners to improve the planning process.
More generally, workspace related metrics can be designed for any motion plan-
ning problem that would benefit from exploiting such metrics during planning.

5.1 Future Work

Future research might consider the potential applications of the clearance metric
to other motion planning applications like character navigation in animation and
Image-guided Medical Needle Steering [13]. We also plan to conduct real-world
application experiments to demonstrate the correctness of our method.
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