
Digital Alarm Clock
Regina Rex , Dept. of Math and Computer Science

Mentor: Sergei Bezroukov, Dept. of Math and Computer Science
University of Wisconsin – Superior 

The device is based on Kinetis ARM 48MHz Cortex-M0+ 
microcontroller from NXP because it has good low power 
mode capability and DS3231MZ - a real-time clock with the 
Inter-Integrated Circuit Interface (I2C). The RTC chip is 
powered by a separate CR2032 battery to keep the time 
updated when the alarm clock is turned off. For the display, I 
used a 2x8 character Newhaven LCD with backlight. The 
Texas Instrument HDC1050 sensor, which is highly 
accurate and also has low power capability, is used to 
measure temperature and humidity. A micro-USB connector 
or a block of two AAA batteries can be used to power the 
alarm clock.

The system was programmed in C-language and developed 
in Keil μVision integrated development environment (IDE). 
The compiled code was loaded into the microcontroller 
using Segger J-Link ARM Programmer.

The purpose of this project is to design and program a 
system using a microcontroller. For this project, I chose to 
design an alarm clock that displays time along with air 
temperature and humidity. It uses low power mode to save 
power and maximize battery life. The clock can also be used 
to set an alarm and the time can be adjusted. It can be 
powered using a battery or a micro-USB cable. The clock 
comes with a snooze function, and the alarm can be turned 
on/off whenever the user pleases. The top line of the LCD 
displays the time in hh:mm format followed by A or P with 
indicates AM or PM and the symbol (ö) which means the 
alarm is on. The bottom line of the LCD shows the 
temperature (°C) and humidity (%), or the clock state. 

Hardware

Loading Code

Overview Finite State Machine Design

The Digital Alarm Clock was my first microcontroller project. 
I learned how to design and program a system using a 
microcontroller. And how to optimize the battery life of a 
microcontroller based project by putting the microcontroller 
in a state of low power.  I still use the alarm clock to ensure I 
wake up on time for my classes. I also gained hardware 
skills that would be useful for a career path as an 
Embedded Software Engineer. 

Learning Outcome

There are five possible states in the finite state machine 
design of the Digital Alarm Clock. The buttons on the alarm 
clock are used to change the clock states, set the clock and 
alarm time, and to switch the alarm on/off. These are the 
alarm clock buttons and their functionalities:

• Button 1 ( B1 - The leftmost button ): This button is used 
to change the clock’s state

• Button 2 ( B2 - The middle button ): This button is used to 
increase hours and minutes

• Button 3 ( B3 - The rightmost button ): This button 
changes the clock mode to state 0. It also turns the alarm 
on if it is off and vice versa

Below is a table showing the Finite State Machine Design.

Firmware
The program uses a Finite State Machine to implement all 
clock functions, such as setting current time and alarm time 
and activating and deactivating the alarm. First, the program 
configures the hardware and runs through the setup routine. 
When the main loop runs, it checks the buttons to see if they 
are pressed and performs the function based on the current 
clock state. It also puts the microcontroller to sleep and 
wakes it up every 20 milliseconds to save power and 
efficiently use the battery life. The program also includes 
code for accurate the button debouncing. In state 0, at the 
end of each loop, if the alarmOn variable is equal to 1 
(meaning the alarm is on), the current time is compared with 
the alarm time, and if the alarm time is equal to the current 
time, the buzzer starts to beep. The buzzer beeps and stops 
every 20 milliseconds to produce a repetitive sound.  The 
snooze button ( Button 3 ) is used o turn stop the buzzer 
from making noise when the Alarm goes on. 

Schematic

Assembly

Digital Alarm Clock 
(Back)

Digital Alarm Clock 
(Front)

Table of States


